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Multivariate clustering was used to infer
atmospheric transport mechanisms from the
combination of six trace gases in samples
taken in the Crystal−FACE experiment
performed over southern Florida in July

of sampled air masses using multivariate
clustering to delineate 15 concentration
signature groupings.  Shown at the right
are 15 altitude x time maps, one for
each tracer signature group, with samples
assigned to that group highlighted in red.
Although the tracer groupings were based on
concentration data alone, the cluster groups
segregate well into discrete regions of the
spatio−temporal map, possibly suggesting
discrete functional modes.

used as "fingerprints" to identify sources
2CO  , CO, NO, NO  , and H  O vapor were2

2002.  The concentration mixtures of O  , 3
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Four prospective atmospheric transport
mechanisms within the "middleworld"
troposphere were hypothesized: (A) High
Latitude Stratosphere (HLS), (B) Old
Convective (convective air with low NO lost
to 1−week old atmospheric chemistry), (C)
Upper Tropical Troposphere (UTT), and (D)
Tropical Lower Stratosphere (TLS).  When the
15 tracer concentration clusters were
remapped to the 4 prospective atmospheric
transport mechanisms (and 3 combinations of
those transport mechanisms) on the basis
of the tracer fingerprint concentrations,
the 7 new altitude x time maps show even
more discretization according to the new
hypothesized functional assignments.

This study shows that atmospheric
regimes produced by cluster analysis
formed discrete intervals in the time
domain, suggesting different aspects
of atmospheric transport.

In these five bivariate plots of
tracer pairs, points are color−coded by
their ostensible atmospheric transport
mechanisms.  The functionally coded
clusters are well−segregated in tracer
concentration space.  Such separation
is consistent with an hypothesis that
these air masses resulted from different
discrete atmospheric transport
mechanisms.
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Clustering CRYSTAL−FACE
Measurements into Atmospheric Regimes

Trajectories are drawn with the similarity color of the climate regime to which
spider has just moved, but the links subsequently change to the color of the
spider that traversed them most frequently.  Line segments between states
become thicker with repeated traversal.

Now that a common set of clustered states has been obtained, the climate 
trajectories for a single geographic location can be shown as 5 different
‘‘spiders’’ (one for each BAU run) traversing a single shared set of climate
states.  Here, each spider, representing a single BAU, has a different color.
When two spiders occupy the same climate regime, the overlapping spiders
are colored black.

The multiple spiders are often co−incident on the same climate state or regime in January and July, the climatic extremes of the year, but spread out across multiple states in spring and fall ‘‘transitional’’ months.  Spiders often
appear on opposite sides of the diamond−shaped seasonal orbit in both the soil moisture and the precipitation planes, but rejoin at the top and bottom of the diamonds in the summer and winter months.  Thus, the BAU run
predictions are similar with regard to temperature, but tend to be more variable with respect to soil moisture and precipitation.  This variability seems to increase to some degree as the simulation progresses.

Five Climate Trajectories in a Common Climate State Space

Tracing out the entire seasonal and annual trajectory from the Ensemble
Average time series for the usual location in the Middle East, we see
that averaging the model results reduces the frequency of visitation to
extreme climate states.  Because of the predicted climate change and the
variability among the runs, the very cold winter state is never visited
by the Ensemble Average after about 25 years even though individual runs
predict occasional visitation.  Moreover, the desertification predicted
by some ensemble members is not strong enough to push the Ensemble
Average into this desert climate state.

Ten year time interval averages for the present (2001−2010) and the future (2089−2098) for two
seasons were created from the Ensemble Average time series.  These four snapshots were then
similarly classified using a one−pass clustering in conjunction with the previously−defined
climate states.  The resulting maps and regime histograms show where regime change has occurred
and which regimes experience significant area changes.  Stop−light color difference maps show
which climate regimes shrank from the present to the future (red), which regimes stayed the
same size globally (yellow), and which grew (green).  The difference maps show the location
of the affected climate regimes with respect to present predicted conditions.
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Ensemble Cluster Evolution, 5 Year Running Average, Similarity Colors - 32 Clusters
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An Ensemble Average time series was generated using all 5 BAU model runs by averaging all runs
at each time interval for each grid cell.  To make the analysis of this single time series
comparable to the Ensemble Analysis results, a special type of clustering was performed.

Average time series into the single common set of climate
regimes already defined.  Once classified, the Ensemble
Average results were analyzed and displayed just like the
time series from the individual runs.

The Ensemble Average Regime Area Change graph at right
shows the climate regimes which undergo a significant
global area change.  These curves are directly comparable
to the individual Regime Area Change graphs for the
individual BAU runs shown at left because they are in
terms of the same single common set of climate states.

A One−pass Clustering was used to classify the Ensemble

Ensemble Average Cluster Analysis

All of these results, along with maps and animations, are available in:

Oglesby.  August 3, 2005.  "Using Clustered Climate Regimes to Analyze
and Compare Predictions from Fully Coupled General Circulation Models."
Earth Interactions, 9(10): 1−27, doi:10.1175/EI110.1.

Hoffman, Forrest M., William W. Hargrove, David J. Erickson, and Robert J.

Global Atmosphere/Cloud Regimes Defined by
Multivariate Cluster Analysis from

the Community Atmosphere Model (CAM3.0)
Show Recurrent Seasonal Convective Regions

One of the primary goals of the ARM Program
is to improve atmospheric models by making
careful measurements of atmospheric behavior.
Clouds are generally acknowledged to be the
single biggest challenge to the accuracy of
current atmospheric models.  This project is
applying multivariate statistical techniques
to model output and ARM measurements to
discern when and where the two disagree.

As in previous studies (discussed at left) an
intial set of atmospheric regimes were defined
using multivariate spatio−temporal clustering.
Selected for the first suite of model data
was a run from the Community Climate System
Model (CCSM3) for the IPCC Fourth Assessment
Report, in this case an SRES A2 scenario
ensemble member.  This model run was performed
at T85 resolution (about 2 degrees) for the
period 2000−2100.  Monthly mean values for six
variables that describe the atmospheric state
(but not clouds) were chosen for inclusion in
the analysis of the first ten years of the run.
Five of the variables span all 26 model levels
in the vertical of the atmosphere, resulting
in 131 total factors.  See table below.

In the first analysis, 32 clusters/atmospheric 
regimes were requested. The maps and histograms
at right show the distribution of those regimes
(colored randomly) for each month of a single
year (2008). Strong, coherent regimes appear
in the tropics, suggesting that these indicate
wide areas of strong convection. Coherent
patterns appear over Greenland and Antarctica,
as well as over large orographic features.
The cluster evolution plot (below) shows the
areal frequency of the largest regimes (using
the same random colors as the maps) over the
ten year period included in the analysis. A
recurrent seasonal cycle is evident in the
frequency of these atmospheric regimes.

Short−term dynamics are not represented well 
by the model’s monthly means; however, this run
was chosen because it also includes six−hourly
output of the important atmospheric fields. This
enormous dataset will be used in a subsequent
analysis to better match the temporal frequency
of cloud dynamics and ARM measurements.  In
addition, a thorough factor analysis (too large to
present here) has shown that little to no infor−
mation is added by the inclusion of all model
layers. As a result, only a few vertical levels will
be included in subsequent analyses.

Variables Used for Atmospheric Regimes
Variable Description Levels

PS Surface Pressure 1

T Temperature 26

RH Relative Humidity 26

U Zonal Wind 26

V Meridional Wind 26

Z3 Geopotential Height 26

131 Total Factors

Conclusions

supercomputer, the tool can be used to reveal long−term patterns in very large multivariate
data sets.  Given an array of equally−sampled variables, the technique statistically establishes
a common and exhaustive set of approximately equal−variance regimes or states in an N−dimensional
phase (or state) space.  These states are defined in terms of their original measurement units
for every variable considered in the analysis.

From Measurements to Models:

Introduction

Forrest M. Hoffman*, William W. Hargrove**, Richard T. Mills*, A. D. Del Genio***, and Jasna Pittman****
Cross−Comparison of Measured and Simulated Behavioral States of the Atmosphere

A statistical clustering technique was used to analyze output from the Parallel Climate Model (PCM)

individually and then in combination, into 32 groups or climate regimes. Three PCM output fields
were considered for this initial work:  surface temperature, precipitation, and soil moisture (root zone
soil water).  Only land cells were considered in the analysis.  The clustered climate regimes can be
thought of as climate states in an N−dimensional phase or state space.  These states provide a
context for understanding the multivariate behavior of the climate system. This technique also makes
it easy to see the long−term climatic trend in the copious output (about 1200 monthly maps per run)
that is otherwise masked by the magnitude of the seasonal cycle.

Cluster analysis is a powerful tool that can provide a common basis for comparison across space
and through time for multiple climate simulations.  Because it runs efficiently on a parallel

Cluster analysis is useful for analyzing and intercomparing model results with measurements
as well.  The initial definition of atmospheric states from fundamental geophysical variables

model fields.  The next steps in this project are to similarly determine atmospheric/cloud states
from the long time series of measurements at ARM sites, and then to cluster model output and
measurements together to determine where the modeled and observeds trajectories among states
diverge and converge. The combination of states for each ARM site will yield insights into the
representativeness of the entire ARM observation network, suggesting when and where the mobile
facility should make additional measurements to maximize coverage or confirm model results.

(Washington, et al.).  Five 100−year ‘‘business as usual’’ scenario simulations were clustered,

The same approach is useful for analyzing observations to find atmospheric regimes or states that
may be highly dynamic.  CRYSTAL−FACE measurements were clustered to infer atmospheric transport
mechanisms from combinations of six trace gases.  The discrete groups defined by clustering proved
to match well with backtrace experiments focused on determining the origin of air parcels during
the observational period.

Multivariate Spatio−Temporal Clustering (MSTC) also offers a mechanism for comparing model results

such statistical techniques to better understand cloud processes and climate feedbacks, and to 
with measurements having different spatial and temporal scales.  The goal of this project is to exploit

provide detailed information about when and where atmospheric models do not match observations.

(shown above) demonstrates that cloud type and function can likely be determined from these
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