Reducing Uncertainties

Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

@ there must be a relationship between contemporary variability
and future trends on longer time scales within the model, and

@ it must be possible to constrain contemporary variability in
the model using observations.

Example
Hall and Qu (2006) evaluated the A incimte change an
strength of the springtime snow
albedo feedback (SAF; Aas/ATs)
from 17 models used for the IPCC
AR4 and compared them with the
observed springtime SAF from
ISCCP and ERA-40 reanalysis.
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Hypotheses

Hypothesis 1 — Seasonal to Annual Time Scale

A stronger climate-carbon cycle feedback will be exhibited by
models with weak contemporary annual cycles of atmospheric CO5
in the Northern Hemisphere extratropics.
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Hypotheses

Temperature Dependence of Heterotrophic Respiration
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Hypotheses

Hypothesis 2 — Interannual to Decadal Time Scale

Models with excess biomass in the tropics have larger effective
carbon losses due to temperature and larger effective sensitivities

of carbon storage to CO,.
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Biomass estimates from Saatchi et al. (2007) and LBA-RAINFOR Project

Over-estimates of biomass could lead to large releases of carbon during droughts and
may indicate too strong an effective response to temperature (a negative feedback),
possibly resulting from too strong a response to CO» increases (a positive feedback).
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Hypotheses

Hypothesis 3 — Interannual to Decadal Time Scale

The relationship between El Nifio-Southern Oscillation (ENSO)
and observed CO, anomalies at Mauna Loa may be exploited to
evaluate ocean and terrestrial model responses.

Mauna Loa CO A Anomaly Growth Rate and Ocean Nino Index (ONI)
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Hypotheses

CO, Dependence on El Nifio-Southern Oscillation (ENSO)

(]

Keeling and Revelle (1985) described a shutdown in upwelling
and biological activity during EI Nifo years, resulting in a
shutdown of CO; out-gassing.

Many others have confirmed this response, including Rayner
et al., Feeley et al., Baker et al., and others.

They suggested the deficiency in CO, flux is more than
compensated for by widespread forest fires and plant deaths
due to drought.

@ While the net effect of natural processes may once have been
a sink, the opposite effect is observed today.

Opportunistic burning for forest clearing is likely to strengthen
the sensitivity of CO5 to El Nifo.
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Hypotheses

Mauna Loa Atmospheric CO, Mixing Ratio Mauna Loa Atmospheric CO, Miing Ratio Anomalies
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Hypotheses

CO, Anomaly Growth Rate and Ocean Nifio Index

Mauna Loa CO , Anomaly Growth Rate and Ocean Nino Index (ONI)
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Hypotheses

Mount Pinatubo Eruption

@ June 1991 on island of
Luzon in the Philippines

@ Second largest volcanic
eruption of 20th century

@ Millions of tons of sulfur
dioxide discharged into
atmosphere

@ Gases and ash reached
34 km high and over
400 km wide

o Largest disturbance of
stratosphere since
Krakatau in 1883
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Hypotheses

Relation Between CO, Anomaly Growth Rate and ONI

Relation Between CO ) Anomaly Growth Rate and ONI (1958-2008)
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Hypotheses

Relation Without 1991-1995 (Pinatubo Period)

Relation Between CO ) Anomaly Growth Rate and ONI (1958-2008)
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Hypotheses

Community Earth System Model (CESM) Co

CESM Relation Between CO ) Anomaly Growth Rate and ONI (800-849)
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Hypotheses

CESM vs. Observations

Relation Between CO ) Anomaly Growth Rate and ONI
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It may be possible to separate 5 into more
easily digestible (testable) components:

[, is the carbon uptake (NECB) sensitivity to elevated
levels of atmospheric CO,

IBL — C°/Bfert ' NPPO "To (4)

Where Cis a constant (units of 1/ppm)
(NPP, — NPP )/ NPP,

Prai = In(CO,, / CO,)
NPP, is initial or steady state NPP (~ contemporary NPP)

7, is the initial or steady state turnover time of carbon in
the system



Example application:
Explaining model responses to FACE simulations
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Example application:
Explaining model responses to FACE simulations
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Example application:
Explaining differences in model responses to historical
changes in atmospheric CO, and N deposition

The Y axis is a prediction of [ based on initial
NPP, residence times, and relative changes in NPP

! ' | !  Transient historical runs
from 1800-2004

e Each pointis a biome mean
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Using this framework for CMIP5 analysis:
proposed approach for analyzing 5,

Constrained [,

Lrort (Mean of FACE + 50%)

7z

Carbon turnover time, t, (constrained using sum of vegetation and litter pool sizes)
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